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Abstract

Non-negative dyadic data, that is data representing observations which
relate two finite sets of objects, appear in several domain applications, such
as text-mining-based information retrieval, collaborative filtering and recom-
mender systems, micro-array analysis and computer vision. Discovering la-
tent subgroups among data is a fundamental task to be performed on dyadic
data. In this context, clustering and co-clustering techniques are relevant
tools for extracting and representing latent information in high dimensional
data. Recently, Non-negative Matrix Factorizations attracted a great interest
as clustering methods, due to their capability of performing a parts-based de-
composition of data. In this paper, we focus our attention on how NMF with
additional constraints can be properly applied for co-clustering non-negative
dyadic data. In particular, we present a process which aims at enhancing
the performance of 3-factors NMF as a co-clustering method, by identifying
a clearer correlation structure represented by the block matrix.

Experimental evaluation performed on some common datasets, by apply-
ing the proposed approach on two different NMF algorithms, shows that,
in most cases, the quality of the obtained clustering increases, especially in
terms of average inter-cluster similarity.

Keywords: Co-clustering, non-negative matrix factorization, subspace
approximation, text mining
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1. Introduction

Several domain applications deal with observational data which relate
two finite sets of objects, so that any observation is made on dyads. In the
simplest case, an elementary dyadic observation consists in the co-occurrence
of a pair of objects taken from each of the two sets in the domain, while other
cases provide the strength of preference or association of dyadic pairs. Exam-
ples of dyadic data can be found in text-mining-based information retrieval,
collaborative filtering and recommender systems, micro-array analysis and
computer vision [12, 40].

A fundamental task in the context of unsupervised learning from dyadic
data is the structure discovery, that is the identification of subgroups among
data [23]. Clustering of one set of objects and co-clustering of both sets can
be performed to discover latent relationships synthesized in dyadic data. Co-
clustering methods can identify subgroups of documents with similar prop-
erties with respect to subgroups of terms in text mining [14, 8]; recognize
groups of genes that show similar activity patterns under a specific subset of
the experimental conditions in micro-array analysis [31, 7], or with respect
to their interactions with microRNAs [32, 33, 34]; discover subgroups of cus-
tomers with similar preferences or behaviors toward a subset of products in
recommender systems [19, 43]. Co-clustering is also useful to automatically
perform dimensionality reduction of highly-dimensional data [1].

Many approaches presented in the literature for the clustering task are
based on Non-negative Matrix Factorizations (NMF), which aim at providing
a minimum error non-negative representation of a data matrix. From the
first works of Lee and Seung [25, 26], NMF has been deeply investigated
both in theory and in practice and successfully used as a tool in many real
applications [2, 4, 9, 24, 38, 39]. For a recent overview, see [20]. In [15]
the relationship between NMF (with additional orthogonal constraints on its
factors), k-means and spectral-based clustering was demonstrated, while in
[35] the mathematical equivalence between orthogonal NMF and a weighted
variant of spherical k-means was proved together with some indications about
the cases in which orthogonal NMF should be preferred to k-means and
spherical k-means. Moreover, experiments performed in [42] showed that
some NMF-based approaches outperform spectral-based methods achieving
higher accuracy and efficiency in performing document clustering.

Focusing on the co-clustering task, in [28] the authors proposed the Block
Value Decomposition (BVD) to explore the latent block structure in dyadic
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data matrices by means of a tri-factorization, without any additional con-
straint. Nonnegative Matrix Tri-factorization (NMTF) was firstly proposed
in [16] to co-cluster words and documents at the same time, while a new mul-
tiplicative updating algorithm with orthogonality constraints was developed
in [44], demonstrating its usefulness in revealing polysemous words. Due to
its encouraging empirical results, NMTF methods have been further investi-
gated to address various aspects of co-clustering such as: graph regularization
for clustering data on manifolds [21], semi-supervised sentiment analysis for
combining some direct and explicit knowledge in text mining [27], treatment
of heterogeneous data [6].

Other studies have been conducted for the definition of novel NMTF al-
gorithms to efficiently perform co-clustering on large data sets in real word
applications [41] and to compare different approaches to try to identify which
algorithms appear more suitable for particular situations [18]. More recently,
NMTF has been extended by introducing different forms of structure con-
straint on the factors, to integrate some prior knowledge and/or domain in-
formation in the factorization process in order to achieve more interpretable
results [6, 17, 30, 37].

It is noteworthy that most of the recent works on NMTF has been con-
ducted on the identification of proper constraints to impose on the factors
in order to optimize some particular aspects of the co-clustering. However,
there is no attempt to focus on the structure of the (central) block matrix,
which represents the correlation strengths between row and column clusters.
Observing such a matrix it is possible to analyze the correlation between
groups identified on a dimension with respect to those identified on the other
dimension. In this paper, we present an approach which aims at optimizing
the correlation structure represented by the block matrix. Such optimization
is performed by removing correlations which appear noisy, with the main
goal of obtaining better-separated co-clusters.

In the following section, a brief review about clustering/co-clustering
through NMF (with 2 and 3 factors) is reported, considering the common
domain of textual documents. In Section 3, we detail the extraction of a
clearer correlation structure and its exploitation as background knowledge
for a further execution of any iterative algorithm. Some details about the
time complexity of the proposed procedure are also provided. In Section 4,
some experimental results are reported in order to evaluate the effect of the
proposed procedure in discovering a clean correlation structure between doc-
ument and term clusters and to use such a structure as a starting point in
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some NMTF algorithms. These experiments substantially show that the pro-
posed approach is able to reduce the average inter-cluster similarity, without
affecting the intra-cluster similarity. Finally, some conclusions and future
works are sketched in Section 5.

2. NMF for clustering and co-clustering: a review

In this section, we briefly review related work on NMF for clustering
documents and for co-clustering documents and terms.

2.1. Clustering by 2-Factor NMF

The classical 2-factor NMF approximates a term/document matrix X ∈
Rn×m

+ into the product of two non-negative matrices – a base matrix W ∈
Rn×k

+ and an encoding matrix H ∈ Rk×m
+ – such that X ≈ WH, where

k < min(m,n).
These approximating factors are typically obtained by solving the con-

strained least square minimization problem:

min
W≥0,H≥0

‖X −WH‖2F , (1)

where ‖ · ‖F indicates the Frobienus matrix norm. Different objective func-
tions have been proposed in the literature, some of them are also designed to
incorporate additional constraints into the factors W and H. However, most
of the proposed objective functions (included, the least squared problem for-
mulated in (1)) can be brought back to the general framework of Bregman
divergences as described in [10, 11, 13].

The factors W and H in the 2-factor NMF are able to provide basic docu-
ment or term clustering. In fact, considering the columns of W as document
cluster centroids, the j-th document of the input matrix X can be associated
to the centroid cj (i.e., to its corresponding cluster) which gives the maximum
contribute in the linear combination:

cj = argmax
z

Hzj. (2)

Furthermore, applying the column-sum-to-1 normalization, given by:

X ′ = XD−1X W ′ = WD−1W , H ′ = HD−1H , (3)
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Figure 1: Document clustering (k = 3), with orthogonality constraints on the rows of H.
X ∈ R6×9

+ is factorized in two matrices W ∈ R6×3
+ and H ∈ R3×9

+ . The columns of W
represent the document cluster centroids while on each row of H it is possible to group
the documents. In the example, 1st to 3rd documents are in the first cluster, 4th to 6th
documents are in the second cluster, 7th to 9th documents are in the third cluster.

(where DX , DW , DH are diagonal matrices containing the column sums of X,
W and H respectively) the values H ′zj can be interpreted as the probability
that the j-th document belongs the z-th document cluster. Analogously, the
row-sum-to-1 normalization allows to identify the probability that the i-th
term belongs the j-th term cluster.

It is noteworthy that the basic NMF provides an almost casual clustering.
In order to obtain a solution that guarantees a real clustering interpretation,
additional orthogonality constraints on W and/or H should be imposed.

In [16], the minimization problem (1) was modified to generate a real
document clustering, by imposing the orthogonality constraint on the rows
of H, as follows:

min
W≥0,H≥0

‖X −WH‖2F , s.t. HH> = I, (4)

Graphical representation of the clusters derived by (4) are illustrated in
Figure 1, by considering the maximum value for each column of the matrix H
and grouping the documents on the same row. In the same manner, a term
clustering can be achieved by requiring that the orthogonality constraint is
satisfied by the columns of W (i.e., W>W = I), as illustrated in Figure 2.

The addition of the orthogonality constraint on the rows of the matrix H
let the document centroids (the columns of the matrix W ) arrange themselves
such that each document is really closer to only one cluster centroid and it
is far from the others. In this way, the minimization of the intra-cluster
variance and the maximization of the inter-cluster variance can be obtained
for column clustering of the input data matrix.
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Figure 2: Term clustering (k = 3) with orthogonality constraints on the columns of W .
X ∈ R6×9

+ is factorized in two matrices W ∈ R6×3
+ and H ∈ R3×9

+ . The rows of H represent
the three term cluster centroids while on each column of the matrix W it is possible to
group the terms. In the example, 1st and 2nd terms are in the first cluster, 3rd and 4th
terms are in the second cluster, 5th and 6th terms are in the third cluster.

It is noteworthy that the achievement of the true orthogonality condition1

depends on the specific algorithm used to solve the orthogonal NMF problem.
In this paper, we refer to the soft-orthogonality constraint, since most of
NMF algorithms aim at satisfying approximately, i.e. not exactly, the true
orthogonality. However, recently, in [35] two algorithms are proposed that
perfectly satisfy the orthogonality constraint at each iteration.

2.2. Co-clustering by 3-Factor NMF

Co-clustering of both documents and terms can be performed by simulta-
neously constraining W and H to be orthogonal, i.e., solving the constrained
optimization problem:

min
W≥0,H≥0

‖X −WH‖2F , s.t. HH> = I,W>W = I. (5)

However, this double orthogonality constraint is really too restrictive, and
the solutions of (5) result a rather poor low-rank approximation of the data
matrix X. In fact, we are asking that the document centroids (i.e., the
columns of W ) have to arrange themselves in order to reach the orthogonality
of the rows of the matrix H and, in the same time, we require that the term
centroids (i.e., the rows of H) have to arrange themselves in order to reach
the orthogonality of the columns of the matrix W . Moreover, the number of
terms and document clusters must be the same. To provide additional degree

1We refer to true orthogonality to intend that orthogonality among vectors is reached
(by the algorithm) at the machine precision.
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of freedom, we need to add an extra factor in the factorization of the original
data matrix X. This new matrix, in fact, allows the low-rank approximation
to remain accurate, while the soft-orthogonality of the columns of W and the
rows of H is obtained.

Non-negative Matrix Tri-Factorization (NMTF, or 3-factors NMF, also
known as Non-negative Block Value Decomposition (NBVD) [28]) approxi-
mates a term/document matrix as X ≈ USV , where U ∈ Rn×l

+ is the row-
coefficient matrix, S ∈ Rl×k

+ is the block matrix, V ∈ Rk×m
+ is the column-

coefficient matrix, the values k and l represent the number of document and
term clusters, respectively (generally, k � min(n,m) and l� min(n,m)).

Adding the orthogonality constraints on both U and V matrices, as dis-
cussed in [16, 44], the optimization problem becomes:

min
U≥0,S≥0,V≥0

‖X − USV ‖2F , s.t. UU> = I, V >V = I. (6)

In this way, columns and rows are clustered simultaneously and both or-
thogonality constraints can be satisfied keeping a good low-rank approxima-
tion. Conveniently grouping the factors U, S and V , an equivalent 2-factors
NMF can be derived. Particularly, for document clustering we put:

W = US, H = V. (7)

In this way, the columns of the matrix US are the basis vectors of the column
space ofX (i.e., the document centroids) and, accordingly to (2), the elements
in each row of the matrix V belong to the same cluster.

Analogously, for term clustering, we consider:

W = U, H = SV, (8)

such that the rows of the matrix SV represent the basis vectors of the row
space of X(i.e., the term centroids) and the elements of each column of the
matrix U belong to the same cluster.

Starting from the above considerations, it is questionable whether there
exists any difference between two separate 2-factors NMF clusterings (one
for column space and another for row space) and one simultaneous clus-
tering with 3-factors NMF, also in terms of clustering quality. Qualitative
descriptions illustrated by Figures 1, 2 and 3, together with the application
of Equations (7) and (8), suggest the equivalence of the two approaches.
However, as we will show in the next section, a deep analysis of the block
matrix S could be helpful to emphasize the real advantages related to the
3-factors NMF approach.
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3. Block Matrix Optimization

As shown in the previous section, both 2-factors and 3-factors NMF can be
used to group documents and terms. Moreover, imposing additional orthog-
onality constraints leads to obtain clusters which minimize the intra-cluster
variance and maximize the inter-cluster variance. However, in order to sat-
isfy such orthogonality constraints as much as possible on the row-coefficient
matrix and/or on the column-coefficient matrix, the discovered block ma-
trix could appear “noisy”, since not optimized with respect to any given
criterion. In particular, the block matrix could present an unclear structure
representing the correlations between document and term clusters, that is,
could contain significant (i.e. non-zero) values in (almost) all cells. This
is not a desirable result, since it describes a situation in which (almost) all
document clusters are related to (almost) all term clusters (low inter-cluster
variance). Such a situation can be mainly due to:

1. noise in the data, which let the algorithm identify correlations between
document and term clusters which actually do not exist;

2. high overlap among the categories represented by the clusters.

In order to face the first issue, we propose a method which is able to ex-
tract a clearer correlation structure and to exploit it as a background knowl-
edge for a further execution of any iterative algorithm. Moreover, we show
that the application of proposed method allows us to better identify the pres-
ence of the second issue, which is often due to an inappropriate choice of the
number of clusters k and l.

As previously stated, each (i, j)-th element of the block matrix S repre-
sents the correlation strength between the term cluster i and the document

Figure 3: Simultaneous document and term clustering (k = 3 and l = 3). X ∈ R6×9
+ is

factorized in the three matrices U ∈ R6×3
+ , S ∈ R3×3

+ and V ∈ R3×9
+ . On each row of the

matrix V it is possible to group the documents, while on each column of the matrix U it
is possible to group the terms. The results are the same of that of Figures 1 and 2.
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cluster j. Observing the values of a block matrix, there will usually be some
(non-zero) values significantly lower than the others in the matrix. Our aim
is to identify which are the most significant values to be used to define a
structure for S, which will be then considered as background knowledge for
a further execution of an iterative algorithm. However, since the significance
of each value is relative to the other values, a threshold-based approach can-
not be applied. For example, in (9) the value 2.2 × 102 can be considered
low, if compared to the value 3.2 × 107, but appears high if compared to
8.8× 10−1.

S =


8.8× 10−1 1.4× 10−1 5.2× 10−2 3.6× 10−4 3.2× 107 5.5× 10−8

7.8× 10−2 3.2× 102 8.2× 10−4 7.1× 10−2 3.2× 10−3 3.4× 10−6

1.2× 10−4 2.2× 102 3.8× 102 4.1× 10−6 3.2× 10−8 3.6× 102

4.1× 10−6 8.8× 10−6 2.6× 10−7 6.2× 102 3.2× 10−1 1.2× 10−10

 (9)

The whole clustering process will then consist of three main steps:

1. preliminary clustering, which is devoted to compute U , S and V by
adopting any existing iterative algorithm for 3-factors NMF;

2. correlation structure extraction (CSE), which extracts a clearer struc-
ture for S, starting from that identified in the first step;

3. clustering refinement, which consists in a further execution of an iter-
ative algorithm for 3-factors NMF, with the aim of refining the matrix
S, on the basis of the identified structure, and of computing the new
factors U and V accordingly.

In the following subsections, we focus on the strategy adopted for the sec-
ond step using the matrix (9) as a toy example, starting from the following
observations:

• the maximum value of the matrix has surely to be considered in the
identification of the structure of S (minimizes intra-cluster variance);

• values of the same order of magnitude can be considered equally strong;

• each document/term cluster should be related to the smallest possible
number (at least one) of term/document clusters (maximizes intra-
cluster variance).

According to such observations, we define the procedure to identify the struc-
ture from S as follows:
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1. Build the matrix S ′, taking only the strongest correlation value from
S, for each column and row cluster, by iteratively (min(k, l) times):
(a) taking the current maximum value from S;
(b) removing from S all the values on the same row and column.

2. Build the matrix S ′′, by replacing zero elements of S ′ with values of S
which are actually of the same order of magnitude of (or greater than)
those in S ′;

3. Build the matrix S ′′′ from S ′′, by taking from S the maximum value
for each column and row of S ′′ which does not contain any non-zero
element.

3.1. Building S ′: taking the strongest correlation values

In the following, we report the result obtained applying the first step to
the matrix (9):

• The maximum value is S1,5 = 3.2 × 107. Take it and remove the 1st
row and the 5th column, to obtain:

S(1) =

[
0 0 0 0 0 0
7.8× 10−2 3.2× 102 8.2× 10−4 7.1× 10−2 0 3.4× 10−6

1.2× 10−4 2.2× 102 3.8× 102 4.1× 10−6 0 3.6× 102

4.1× 10−6 8.8× 10−6 2.6× 10−7 6.2× 102 0 1.2× 10−10

]

S ′ =

[
0 0 0 0 3.2 × 107 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

]

• The maximum value is S
(1)
4,4 = 6.2 × 102. Take it and set remove the

4th row and 4th column to obtain:

S(2) =

[
0 0 0 0 0 0
7.8× 10−2 3.2× 102 8.2× 10−4 0 0 3.4× 10−6

1.2× 10−4 2.2× 102 3.8× 102 0 0 3.6× 102

0 0 0 0 0 0

]

S ′ =

[
0 0 0 0 3.2 × 107 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 6.2 × 102 0 0

]

• The maximum value is S
(2)
3,3 = 3.8 × 102. Take it and remove the 3th

row and 3th column to obtain:

S(3) =

[
0 0 0 0 0 0
7.8× 10−2 3.2× 102 0 0 0 3.4× 10−6

0 0 0 0 0 0
0 0 0 0 0 0

]
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S ′ =

[
0 0 0 0 3.2 × 107 0
0 0 0 0 0 0
0 0 3.8 × 102 0 0 0
0 0 0 6.2 × 102 0 0

]

• Finally, the maximum value is S
(3)
2,2 = 3.2 × 102. Take it and remove

the 2th row and 2th column to get:

S(4) =

[
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

]

S ′ =

[
0 0 0 0 3.2 × 107 0
0 3.2 × 102 0 0 0 0
0 0 3.8 × 102 0 0 0
0 0 0 6.2 × 102 0 0

]

3.2. Building S ′′: taking the values of the same order of magnitude

As outlined in the general procedure, in order to build the matrix S ′′, we
have to take from S, for each row and column, the values of the same order
of magnitude of (or greater than) the values in S ′. However, performing
this selection only on the basis of the exponent of each value produces poor
results. Indeed, the values 9.99 × 104 and 1.00 × 104 would be considered
similar, while the values 1.00 × 104 and 9.99 × 103 would not. In order
to alleviate such limitation, in the following we define a heuristic selection
strategy, which aims at better identifying the values to select.

Let us suppose we want to identify all the values that can be considered
of the same order of magnitude of y × 10p, where 1 ≤ y < 10. The whole
interval [10p; 10p+1) should be considered only when the value represents the
mean of the interval, i.e. when y = 5.5. Obviously, every greater value
should be taken, leading to the interval [10p; +∞). Generalizing, we impose
that when y ≥ 5.5, the interval to be taken into account is:

[(y − 4.5)× 10p; +∞) (10)

When 1 ≤ y < 5.5, we consider the percentage of the covered interval width,
i.e. y−1

4.5
, and take the residual percentage, i.e.

(
1− y−1

4.5

)
from the higher half

of the lower interval, i.e. from [5.5× 10p−1; 10p) whose width is 4.5× 10p−1.
The interval to consider then becomes

[
10p −

(
1− y−1

4.5

)
× 4.5× 10p−1; +∞

)
,

which can be simplified to:[
10p − (5.5− y)× 10p−1; +∞

)
(11)
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Taking, for each value of the matrix S ′ obtained in the previous step, all
the values (in the same row and column) belonging to the intervals defined
by (10) and (11), we obtain:

S′′ =


0 0 0 0 3.2× 107 0
0 3.2× 102 0 0 0 0
0 2.2 × 102 3.8× 102 0 0 3.6 × 102

0 0 0 6.2× 102 0 0

 (12)

3.3. Building S ′′′: filling all-zero columns and rows

Since each term/document cluster should be related (even if weakly) to
at least one document/term cluster, we impose that no all-zero columns and
rows should appear in the final block matrix. At this aim, we build S ′′′ by
taking from S the maximum value for each all-zero row and column:

S′′′ =


8.8 × 10−1 0 0 0 3.2× 107 0

0 3.2× 102 0 0 0 0
0 2.2× 102 3.8× 102 0 0 3.6× 102

0 0 0 6.2× 102 0 0

 (13)

It is noteworthy that the CSE process is able to highlight the possibility
that a too much high value of k or l has been chosen. Indeed, the presence of
an all-zero row or column could be due to the absence of strong correlations
between the corresponding row/column cluster and the other column/row
clusters, otherwise difficult to observe on the original matrix S. In this
case, in real-world situations (i.e. when the number of categories is really
unknown), a refinement on the number of clusters could be performed instead
of applying the third step the CSE procedure.

The matrix S ′′′ represents the ideal structure we impose on the block
matrix S as a starting point for a further execution of an iterative algorithm.
Every iterative algorithms with element-wise multiplicative update rules will
preserve the “a priori” defined structure.

3.4. Time Complexity Analysis

In this subsection, we report some details about the time complexity of
the proposed procedure. In general, the whole clustering process, as outlined
in Section 3, could lead to a higher running time with respect to a single
run of an NMF algorithm. However, observing the CSE procedure, it is
noteworthy that it works only on the matrix S, which is inherently very
small (namely, it contains k · l elements).

In particular, to build the matrix S ′, we need to find the maximum values
for min(k, l) times, among k · l possible values, removing the values on the
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same row and on the same column. Therefore, in the worst case, for each
extracted value, we have to perform a complete scan of the matrix S (i.e.,
k · l operations) and a scan of the row and column it belongs to (i.e., k + l
operations). This means that the time complexity for the first step is:

min(k, l)[k · l + (k + l)] = O(min(k, l)[k · l +max(k, l)])

= O(min(k, l)[max(k, l) ·min(k, l) +max(k, l)])

= O(min(k, l)2 ·max(k, l)) (14)

The construction of the matrix S ′′ requires a scan of row and column
values (i.e., k + l operations) to which each of the min(k, l) extracted value
belongs. This means that the time complexity of the second step is:

min(k, l) · (k + l) = O(min(k, l) ·max(k, l)) = O(k · l) (15)

The construction of the matrix S ′′′ requires, in the worst case, to find the
maximum value for each row and column. Therefore, the worst-case time
complexity to build S ′′′ (i.e., when a complete scan of the matrix is per-
formed) is:

k · l = O(k · l) (16)

By combining Equations (14), (15) and (16), the whole CSE process has a
time complexity of:

O(min(k, l)2 ·max(k, l)) = O(min(k, l) · (k · l)) (17)

Since k and l are very small if compared to n and m, we can conclude that,
asymptotically, the time required to perform the CSE process is negligible
with respect to the time required for the factorization.

Moreover, although the proposed approach requires two executions of the
NMF algorithm, the final time complexity is not affected, since, in the worst
case, it is increased by a constant factor of 2.

4. Experiments

We evaluated the performance of the CSE process by adopting two ex-
isting algorithms for tri-factorization. In particular, we applied the non-
negative Block Value Decomposition algorithm [28] (henceforth denoted by
N) and the algorithm proposed in [44] (henceforth denoted by O), which
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imposes the orthogonality constraint on both the matrices U and V . It is
noteworthy that, in this experimental evaluation, our focus is to evaluate the
effect of the CSE process in discovering a clean correlation structure between
document and term clusters when NMTF algorithms are adopted. Com-
parison with other topic-based algorithms (such as LDA [3]) or with other
competitive clustering/co-clustering approaches (such as [17, 32]) is out of
the scope of this paper.

Firstly, we evaluated each single algorithm, with and without the appli-
cation of the CSE process. Then, we evaluated the possibility to use an
algorithm for discovering the initial structure of the matrix S and the other
one for the clustering refinement step, with and without the application of
the CSE process. In this way, the first two steps (preliminary clustering and
correlation structure extraction) can be seen as an initialization strategy of
the matrix S for the iterative algorithm adopted to perform the clustering
refinement step.

The initialization of the matrices U and V was performed randomly, ac-
cording to a uniform distribution in [0, 1], since it has been empirically ob-
served in [5] that other initialization mechanisms, such as those based on
feature extraction and on prototype-based clustering, do not significantly
improve the performances of iterative NMF algorithms in terms of the over-
all error. Results reported in the following sections represent the average
values obtained over ten different random initializations. It is noteworthy
that, in order to guarantee a fair comparison, the same initial matrices were
considered for all the NMF algorithms.

As regards the stopping criterion, we required that the algorithms stop
when ||E(i) − E(i−1)||F < 10−4, where ||E(i)||F is the Frobenius Norm of the
error matrix, at the i-th iteration.

4.1. Datasets

The main characteristics of the datasets used in the evaluation are sum-
marized in Table 1, while a short description is provided in the following.

• CSTR. This dataset contains 639 abstracts, belonging to four cate-
gories of technical reports published in the Department of Computer
Science at The University of Rochester2.

2www.cs.rochester.edu/trs/
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Dataset # documents # terms # classes

CSTR 639 4016 4
WebKB4 2803 7287 4
Newsgroups10 500 13709 10
Reuters 5485 14551 8
k1a 2340 21839 20
k1b 2340 21839 6
wap 1560 8460 20
la12 6279 20009 6
sports 8580 14870 7

Table 1: Datasets statistics summary

• WebKB4. The dataset contains 2, 803 documents belonging to the
four most populous categories3 of WebKB, a set of web pages collected
from computer science departments of various universities in 1997.

• Newsgroups10. This dataset contains a subset of 500 documents3

belonging to the top-10 categories of the Newsgroups20 dataset. This
dataset is used to evaluate the effectiveness of the CSE process in the
case of datasets with a small number of documents for each category
and a relatively high number of categories.

• Reuters. This dataset contains 5, 485 documents belonging to the
top-8 categories3 of Reuters-21578, a collection of Reuters newswires
collected in 1987. The dataset was obtained by selecting only docu-
ments associated with a single category. A more recent dataset, Reuters
RCV1-v2, is also available, but it results unsuitable because it has a
multi-label categorization, whereas our experiments are conceived on
hard clustering (i.e., each document is assigned to a single category).4

• k1a, k1b, wap. These datasets5 have been built for the WebACE
project [22] and consist of web pages in various subject directories of

3Defined starting from the training set at: http://web.ist.utl.pt/∼acardoso/datasets/
4Selecting only documents with a single label in Reuters RCV1-v2 leads to preserve

only the 3% of documents, affecting the significance of the evaluation on this dataset.
5Available in the CLUTO toolkit: glaros.dtc.umn.edu/gkhome/cluto/cluto/download
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Yahoo!. k1a and k1b contain exactly the same set of documents, but
they are assigned to a different number of categories (i.e. documents in
k1a are subdivided into more detailed categories). It is noteworthy that
k1a and wap are other examples of datasets with a small percentage of
documents for each category and a relatively high number of categories.

• la12, sports. These datasets5 from TREC are all newspaper stories
from either the LA Times (la12 dataset) or San Jose Mercury (sports
datasets) classied into different topics.

Each dataset has been pre-processed using the Text to Matrix Genera-
tor (TMG) tool [45], which allowed us to remove stop-words (according to
the integrated common words dictionary), to apply a standard stemming
algorithm (i.e. Porter’s algorithm [36]) and to generate the term-document
matrix. The matrix generation has been performed according to the standard
TF-IDF weighting, i.e. tf(t, d) · log |D|

|{d∈D:t∈d}| , where tf(t, d) is the frequency
of the term t in the document d, and D is the whole collection of docu-
ments. Moreover, document vectors have been normalized according to the
L2-norm, in order to remove any possible bias introduced by the different
length of documents.

4.2. Evaluation measures

The evaluation has been performed on the basis of four measures, in order
to take into account both the clustering internal quality and the clustering
external quality. k and l have been set to the number of categories of the
dataset. In the following, we describe the considered evaluation measures:

• Intra-cluster average similarity: measures the average similarity
among documents belonging to the same cluster. The average similarity
for a given cluster Cz is defined as follows:

IntraSim(Cz) =

∑mz

i=1

∑mz

j=i+1 sim(di, dj)

0.5×mz × (mz − 1)
,

where di, dj are documents of the cluster Cz, mz is the number of doc-
uments of Cz and sim(di, dj) is a similarity function (cosine similarity,
in our case). The intra-cluster average similarity is defined as:

IntraSim =

∑k
i=1 IntraSim(Ci)×mi

m
,
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where m is the total number of documents and k is the number of
document clusters.

• Inter-cluster centroids average similarity: measures the average
similarity among documents belonging to different clusters. We calcu-
late the similarity between cluster centroids, instead of calculating the
average between all the documents. The measure is defined as follows:

InterSim =

∑k
i=1

∑k
j=i+1 sim(centroidi, centroidj)

0.5× k × (k − 1)
,

where centroidi is the i-th cluster centroid, k is the number of clusters
and sim(centroidi, centroidj) is the cosine similarity function.

• Clustering Accuracy (CA): measures the percentage of correctly
clustered documents. We used the Kuhn-Munkres algorithm [29] to
map each cluster to an original category.

Given a document di, its cluster label cli and its true label tli, the
Clustering Accuracy is defined as follows:

CA =

∑m
i=1 δ (cli,map (tli))

m
,

where m is the total number of documents, δ(x, y) = 1 if x = y and
δ(x, y) = 0 otherwise and map(tli) is the mapping function obtained
by the Kuhn-Munkres algorithm.

• Normalized Mutual Information (NMI): this measure is based
on the mutual information (MI) between two sets of clusters C (the
original document categorization) and C ′ (the clustering result):

MI(C,C ′) =
∑

ci∈C,c′j∈C′
p(ci, c

′
j) log2

p(ci, c
′
j)

p(ci)p(c′j)
,

where p(ci) and p(c′j) represent the probabilities that an arbitrarily
taken document belongs to the cluster ci and c′j, respectively, and
p(ci, c

′
j) represents the joint probability that this arbitrarily taken doc-

ument belongs to the cluster ci and c′j at the same time.
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This measure is normalized in the [0, 1] interval as follows:

NMI(C,C ′) =
MI(C,C ′)

max (E(C), E(C ′))
,

where E(C) and E(C ′) are the entropy of the set C and C ′, respectively.

4.3. Results analysis

Dataset N N + N∗ O O + O∗ N + O N + O∗ O + N O + N∗

CSTR 0.0462 0.0461 0.0552 0.0534 0.0451 0.0452 0.0545 0.0545
WebKB4 0.0389 0.0403 0.0396 0.0388 0.0385 0.0390 0.0389 0.0378
Newsgroups10 0.0418 0.0409 0.0389 0.0387 0.0362 0.0362 0.0395 0.0396
Reuters 0.0938 0.0966 0.0850 0.0833 0.0841 0.0837 0.0913 0.0944
k1a 0.0133 0.0128 0.0118 0.0082 0.0103 0.0103 0.0107 0.0107
k1b 0.0085 0.0084 0.0106 0.0080 0.0071 0.0071 0.0084 0.0084
wap 0.0361 0.0370 0.0373 0.0320 0.0294 0.0296 0.0384 0.0392
la12 0.1410 0.1430 0.1450 0.1260 0.1420 0.1460 0.1480 0.1480
sports 0.1520 0.1600 0.1600 0.1570 0.1520 0.1490 0.1600 0.1600

Table 2: Intra-clusters average similarity. The application of CSE is indicated with the
symbol ∗. For each pair of columns and for each row, significantly better values are
reported in boldface.

Dataset N N + N∗ O O + O∗ N + O N + O∗ O + N O + N∗

CSTR 0.2694 0.0280 0.1380 0.1179 0.2196 0.1863 0.2541 0.2541
WebKB4 0.2363 0.2346 0.1817 0.0523 0.2999 0.1756 0.1756 0.0315
Newsgroups10 0.0943 0.0310 0.0922 0.0271 0.0129 0.0128 0.0608 0.0608
Reuters 0.0261 0.0553 0.0736 0.0189 0.0095 0.0090 0.0831 0.1422
k1a 0.0400 0.0138 0.0289 0.0087 0.0029 0.0029 0.0201 0.0135
k1b 0.0327 0.0162 0.0737 0.0521 0.0148 0.0148 0.0161 0.0161
wap 0.1800 0.2168 0.0327 0.0351 0.0047 0.0040 0.1432 0.1436
la12 0.3528 0.3724 0.1960 0.0539 0.2744 0.0994 0.1823 0.1842
sports 0.1836 0.0516 0.1240 0.0172 0.0160 0.0065 0.1944 0.1808

Table 3: Inter-clusters centroids average similarity (lower is better). The application of
CSE is indicated with the symbol ∗. For each pair of columns and for each row, significantly
better values are reported in boldface.

Tables 2 - 5 report the results obtained by the execution of the considered
NMF algorithms and their hybridization, with and without the application
of the CSE process.
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Dataset N N + N∗ O O + O∗ N + O N + O∗ O + N O + N∗

CSTR 0.5117 0.5008 0.7214 0.7653 0.5728 0.7684 0.7042 0.7121
WebKB4 0.6223 0.6460 0.6589 0.5583 0.5799 0.5167 0.6621 0.6628
Newsgroups10 0.6360 0.6260 0.6200 0.6080 0.5020 0.5020 0.5380 0.5445
Reuters 0.3987 0.4122 0.3985 0.3404 0.4458 0.4627 0.4162 0.4146
k1a 0.3585 0.3594 0.3346 0.2179 0.2329 0.2329 0.2756 0.2795
k1b 0.5436 0.5829 0.5684 0.5842 0.5684 0.5684 0.5825 0.5825
wap 0.5026 0.4295 0.4718 0.2788 0.2391 0.2385 0.5244 0.5513
la12 0.4254 0.4950 0.4160 0.3856 0.4756 0.4440 0.4381 0.4400
sports 0.3642 0.3724 0.3789 0.3653 0.4934 0.4667 0.3969 0.3804

Table 4: Clustering Accuracy results. The application of CSE is indicated with the symbol
∗. For each pair of columns and for each row, significantly better values are reported in
boldface.

Dataset N N + N∗ O O + O∗ N + O N + O∗ O + N O + N∗

CSTR 0.3906 0.3670 0.6302 0.6797 0.4317 0.6904 0.6310 0.6500
WebKB4 0.3486 0.3807 0.3851 0.3514 0.2850 0.3255 0.3920 0.3943
Newsgroups10 0.6288 0.6317 0.6255 0.6020 0.4891 0.4917 0.5837 0.5879
Reuters 0.3678 0.3724 0.2966 0.3378 0.2893 0.2978 0.2862 0.3338
k1a 0.3359 0.3933 0.2725 0.2615 0.0861 0.0861 0.2479 0.2460
k1b 0.0490 0.2472 0.1741 0.1758 0.0223 0.0223 0.2483 0.2461
wap 0.5015 0.4982 0.5067 0.2577 0.1741 0.1943 0.5070 0.5354
la12 0.2086 0.2936 0.2019 0.1809 0.2629 0.2450 0.2758 0.2808
sports 0.3079 0.2977 0.2812 0.2662 0.3418 0.2980 0.3299 0.3209

Table 5: Normalized Mutual Information results. The application of CSE is indicated
with the symbol ∗. For each pair of columns and for each row, significantly better values
are reported in boldface.

Results obtained in terms of intra-clusters average similarity (Table 2)
show that there are no significant changes when the CSE process is applied.
On the contrary, results in terms of inter-clusters similarity (Table 3) show
that the application of the CSE process almost always lead to an improve-
ment (lower values), which, in some cases, appear very appreciable (see, for
example, results obtained on WebKB4, la12 and sports datasets).

As regards the Clustering Accuracy results (Table 4), the situation ap-
pears less clear. Indeed, in some cases, the application of CSE process leads
to an improvement (e.g. with the algorithm N), whereas in other cases it
leads to a decrease of accuracy (e.g. with the algorithm O). Finally, observ-
ing Table 5, it is possible to see that the application of the CSE process is, in
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some cases, able to slightly improve results in terms of Normalized Mutual
Information.

It should be pointed out that the CSE process performs a structure simpli-
fication. When the number of categories is relatively small and the correlation
between document and term clusters is clear, the structure simplification ap-
plied by the CSE process can significantly improve the results. An example
is given by the CSTR dataset and the combination N + O* (with respect to
N + O). In this case, the CSE process leads to an improvement in terms of
all the considered measures. This result emphasizes the ability of the CSE
procedure to discard noisy correlation between document and term clusters,
as showed in Figure 4.

Figure 4: Application of the CSE procedure on the matrix S discovered by the algorithm
N on the dataset CSTR. The size of each square represents the order of magnitude of each
value. The obtained structure is almost ideal, that is each document cluster is strongly
correlated to a single term cluster.

On the other hand, when the categorization of the dataset is detailed (i.e.
with a high number of fine-grained classes), the CSE process could apply a
strong simplification of the structure, especially if the number of clusters to
extract is not appropriated. We show this possible issue on the datasets k1a
and k1b, since they consist of the same set of documents, categorized in 20
and 6 classes, respectively.

Figure 5 shows the application of the CSE process to the matrix S ex-
tracted by the algorithm O on the dataset k1b (6 categories). In this case,
as for the CSTR dataset (Figure 4), the extracted structure appears clear,
i.e. each document cluster is strongly correlated to a single term cluster,
and the CSE process is able to discard noisy correlations. Such a result
is reflected on the performance obtained with respect to all the considered
evaluation measures. On the contrary, the structure extracted by the dataset
k1a emphasizes a different situation. Indeed, from Figure 6 we observe that:
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Figure 5: Application of the CSE procedure on the matrix S discovered by the algorithm
O on the dataset k1b. The size of each square represents the order of magnitude of each
value. The obtained structure is almost ideal, that is each document cluster is strongly
correlated to a single term cluster.

• some relevant correlations are lost. This mainly occurs when some
particular term (resp. document) clusters are correlated to almost all
document (resp. term) clusters, since the CSE process preserves only
the strongest correlations. The phenomenon that can be observed in
Figure 6 (see red squares in the upper matrix) suggests that the number
of specified term clusters is not appropriated and should be reduced.

• some term (resp. document) clusters appear to be highly redundant,
i.e., they are correlated to the same document (resp. term) clusters
(see blue squares, with different shades, in the lower matrix of Figure
6). This phenomenon suggests that both the number of specified term
clusters and the number of specified document clusters should be re-
duced. Moreover, this also reveals that the categorization is probably
too much fine-grained and that some categories actually represent the
same (or highly related) concepts.

This situation is also reflected on the results obtained in terms of cluster-
ing accuracy (Table 4). Indeed, in this case the CSE process led to a decrease
of the performance, possibly due to the lost of some (possibly relevant) cor-
relations.
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Figure 6: Application of the CSE procedure on the matrix S discovered by the algorithm
O on the dataset k1a. The size of each square represents the order of magnitude of each
value. The obtained structure emphasizes the presence of redundant term and document
clusters.
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5. Conclusions and future works

In this work we briefly reviewed the generally adopted approach to per-
form clustering tasks using Non-negative Matrix Factorizations, in both 2
and 3 factors variants. We introduced the possibility to discover a clean
correlation structure between document and term clusters and to use such
structure as a starting point for the same (or another) iterative algorithm.

Experiments conducted on many datasets, of different size and classified
in a variable number of categories, prove that the application of the proposed
strategy is able to increase the quality of the extracted clusters, especially in
terms of average inter-cluster similarity.

Future works could be conducted to identify the most appropriate algo-
rithm to show the correlation structure and to better understand on which
type of datasets the proposed strategy produces better results. Further im-
provements could be obtained by the application of fuzzy approaches for the
selection of the values of the same order of magnitude in the CSE process.

Moreover, additional studies could be performed to understand whether
there is the possibility to automatically exploit the correlation structure ex-
tracted by the CSE process to refine the number of clusters.
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North Holland, Budapest.

[30] Ma, H., Zhao, W., Tan, Q., & Shi, Z. (2010). Orthogonal nonnegative
matrix tri-factorization for semi-supervised document co-clustering. In
Proceedings of the 14th Pacific-Asia conference on Advances in Knowl-
edge Discovery and Data Mining - Volume Part II PAKDD’10 (pp. 189–
200). Berlin, Heidelberg: Springer-Verlag.

[31] Madeira, S. C., & Oliveira, A. L. (2004). Biclustering algorithms for
biological data analysis: A survey. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics , 1 .

26



[32] Pio, G., Ceci, M., D’Elia, D., Loglisci, C., & Malerba, D. (2013). A
Novel Biclustering Algorithm for the Discovery of Meaningful Biolog-
ical Correlations between microRNAs and their Target Genes. BMC
Bioinformatics , 14(S-7), S8.

[33] Pio, G., Ceci, M., D’Elia, D., & Malerba, D. (2014). Integrating mi-
croRNA target predictions for the discovery of gene regulatory networks:
a semi-supervised ensemble learning approach. BMC Bioinformatics ,
15(S-1), S4.

[34] Pio, G., Ceci, M., Loglisci, C., D’Elia, D., & Malerba, D. (2012). Hierar-
chical and Overlapping Co-Clustering of mRNA:miRNA Interactions. In
L. D. Raedt, C. Bessière, D. Dubois, P. Doherty, P. Frasconi, F. Heintz,
& P. J. F. Lucas (Eds.), ECAI (pp. 654–659). IOS Press volume 242 of
Frontiers in Artificial Intelligence and Applications .

[35] Pompili, F., Gillis, N., Absil, P.-A., & Glineur, F. (2014). Two algo-
rithms for orthogonal nonnegative matrix factorization with application
to clustering. Neurocomputing , 141 , 15 –25.

[36] Porter, M. F. (1997). Readings in information retrieval. chapter An
algorithm for suffix stripping. (pp. 313–316). San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

[37] Salunke, A., Liu, X., & Rege, M. (2012). Constrained co-clustering with
non-negative matrix factorisation. IJBIDM , (pp. 60–79).

[38] Shastri, B. J., & Levine, M. D. (2007). Face recognition using local-
ized features based on non-negative sparse coding. Machine Vision and
Applications , 18 , 107–122.

[39] Soukup, D., & Bajla, I. (2008). Robust object recognition under partial
occlusions using NMF. Computational Intelligence and Neuroscience,
vol. 2008 , 14 pages. Article ID 857453.

[40] Tibshirani, R., Hastie, T., Eisen, M., Ross, D., Botstein, D., & Brown,
P. (1999). Clustering methods for the analysis of DNA microarray data.
Technical Report Stanford University.

27



[41] Wang, H., Nie, F., Huang, H., & Makedon, F. (2011). Fast nonnegative
matrix tri-factorization for large-scale data co-clustering. In Proceed-
ings of the Twenty-Second international joint conference on Artificial
Intelligence - Volume Volume Two IJCAI’11 (pp. 1553–1558). AAAI
Press.

[42] Xu, W., Liu, X., & Gong, Y. (2003). Document clustering based on non-
negative matrix factorization. In Proceedings of the 9th ACM SIGKDD
international conference on Knowledge discovery and data mining (pp.
267–273). ACM.

[43] Yang, J., Wang, W., Wang, H., & Yu, P. (2002). Co-clusters: Capturing
subspace correlation in a large data set. In Proceedings of the 18th IEEE
International Conference on Data Engineering (pp. 517–528).

[44] Yoo, J., & Choi, S. (2010). Orthogonal nonnegative matrix tri-
factorization for co-clustering: multiplicative updates on Stiefel man-
ifolds. Information Processing and Management , 46 , 559–570.

[45] Zeimpekis, D., & Gallopoulos, E. (2006). Tmg: A matlab toolbox for
generating term-document matrices from text collections. In J. Kogan,
C. Nicholas, & M. Teboulle (Eds.), Grouping Multidimensional Data
(pp. 187–210). Springer Berlin Heidelberg.

28


